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Antisymmetric tensor spinor superfield representing a 
massless 2-3/2 supermultiplet 

C Aragone and R Puzalowskit 
Departmento de Fisica, Universidad Sim6n Bolivar, Apartado 80659, Caracas 1081 A, 
Venezuela 

Received 21 July 1981 

Abstract. A 2-3/2 supermultiplet with the gravitino in the representation of an antisym- 
metric tensor spinor is discussed. 

1. Introduction 

Supersymmetry and S-matrix arguments call for s = 3/2 as partner of the graviton, 
ruling out the s = 5/2 alternative (Grisaru and Pendleton 1977, Grisaru et a1 1977). 

These results have also been confirmed algebraically for the s = 5/2 symmetric 
formulation (Aragone and Deser 1979, Berends et a1 1980) as well as for the s = 5/2 
vierbein representation (Aragone and Deser 1980a,b) showing agreement with 
predictions made in a different approach that uses methods of topology (Christensen 
and Duff 1979). 

With the s = 3/2 field in the (1,1/2) Lorentz representation of Rarita and 
Schwinger this leads to supergravity in its well known form (Deser and Zumino 1976, 
Freedman eta1 1976). Here we discuss the effect caused by changing the representation 
of the gravitino, that is we consider a 2-3/2 supermultiplet where the fermion comes in 
the (0,3/2) representation of the Lorentz group. 

The investigations are done for the linearised version of the theory. We find that the 
action derived from the basic superfield has similarities with that one of linearised 
conformal supergravity (Ferrara and Zumino 1978). In particular the analysis of the 
physical degrees of freedom of the theory shows that ghosts are present. But unlike in 
the superconformal case where the ghosts are caused by higher derivatives, here the 
unphysical particles decouple in a supercovariant way. The Fock space splits into two 
disjoint pieces on which the algebra is realised separately. 

2. Construction of the multiplet and action functional 

We start off with the construction of the basis superfield. The spin-3/2 representation 
in question is contained in the y-transverse projection i,b;~ of an antisymmetric 
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second-rank tensor-(Majorana)-spinor which we decompose as followsi : 

= *-- ,U - y ,vu *U = *-- ," + Yr,4UI-2~,uY"*" ( 1 )  

Here $, = &yym + q,Uyp)&,o is the Rarita-Schwinger field. 
The superfield that carries the spinor qbeu as a component field is obtained from the 

s = 1 / 2  chiral superfield WA (as found by Grimm et a1 (1978) and Wess (1978) for the 
vector multiplet) by adding the corresponding index structure: 

W +  W,", 

According to Fischler (1979) this superfield has no local extension, but its (0,3/21 
projection does which we denote by 

w-- ,U =(W,u}@, 

This projection we write out explicitly (in the Weyl representation of the spinors) as it 
carries the fundamental multiplet: 

2 W,; = + iA,,t9 + Sap,,vu"Lp$ + 28 are$v1};;. 12) 

We learn that besides the ( 0 , 3 / 2 )  representation the Rarita-Schwinger field is also 
present. The graviton is in the (3/2, 1/2) representation of the vierbein connection 
represented by the curvature tensor 

sap,,,, = aaap,,y - a p ~ n , , u .  
The antisymmetric pseudotensor A,, is an auxiliary field. As in the case of the 
vectormultiplet W;; is the field strength of a real superfield potential V,, with Abelian 
gauge invariances 

6+,; = 0 64, = a,& 6A,, = 0 fiw,,,p = 0 13a) 
and 

a*,; = 0 a*, = 0 6A,, = 0 f i@, ,np = d,&np (36) 

where E is a Majorana spinor and E,@ an antisymmetric tensor. The superalgebra is 
realised on the fields according to the supertransformations with parameter cy (see also 
Curtright 1979) 

t4a) 

(4b 1 
SW, . ,~  = i(Yyn$;; - i(Yynysy(T$" 

6A, ,  = Eysa(~4,zi; - ~ ~ ~ ~ 4 ~ )  

where we have introduced the definitions 

s n , p  = S,a,,P, s = S",,, *S,u,Ur = 4E;!sapc+, "S, ,  = *spz.,<,. 
The action for this multiplet invariant under (3) and (2) is given by the last component of 
W 2  

I = d4x d20 W" W;; + HC = 1 3 , ~  + 1 2  ( 5 a )  

t- ' I '  orY,,Ys 
0127 U% 0 

J 
t Our y matrices are real, {yu, yyJ  = 2vuv, vWv = L-, + + t i ,  y5 = Y O Y ~ Y Z Y ~ ,  P 

Tilded indices indicate y-transverse projection, and the symbol [ p ,  v ]  = pv - v p  
- + I ,  5 
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where 

4 1 2  = 2i d4x P;a,$, I 
and 

I * - I 2 1  - d4~(SILY’aBSc,V,ap + 2S’”’a*S,,+,p - 2SIL”’S,,, -2*S[c,L’Y3A,v - 2A’”A,,). (5c) 

This action constitutes the basis for our investigations. The following analysis we carry 
out separately for the fermionic and bosonic part. 

3. The fermion action 

First we should like to comment on the special structure of 1312. We find that this is the 
only way of writing a kinetic term for the (0,3/2) representation (except for additional 
Rarita-Schwinger terms, which we discuss later) as it is easily seen in the Weyl 
representation. There the (0,3/2) field is given by a totally symmetric spinor 4 2 ~ ~ .  The 
derivative a, becomes aAA, hence the open indices in the expression $ABCaA (which 
must be part of the kinetic term in the Lagrangian) can only be closed up by a spinor with 
index structure xzc which is the Rarita-Schwinger field. Similarly one finds that the 
(0,3/2) field cannot possess a gauge mechanism associated with an s = 1/2 parameter, 
for a gauge transformation 

8$ABC = (aAhtB (ABC) 

would require an object with two undotted symmetric indices which does not exist (the 
only quantity with two undotted indices is &AB, but it is antisymmetric)?. This shows 
that 1312 as it stands exhausts already all possibilities. 

In order to determine the physical degrees of freedom we consider the functional 

Z [  jWy,  j y ]  = 1 D~c,,D+Y8(GC) exp( i I d4x i{26L”a,JI, + 6”jc; +4Jc,jc}). (6) 

The external sources jc; and jc are y-traceless and in addition one has 

awjG = 0 

due to gauge invariance. We pick the Coulomb gauge GC = = 0. The antisym- 
metric current jc;  (as well as the field t,bc;) can be represented by three-dimensional 
y-transverse spatial vector spinors j i ~  ( 4 ; ~ )  

A further decomposition of the spatial vector spinors yoji ,  y&, &,j and j i G  as described 
by Aragone and Deser (1980a,b) is useful: 

t Moreover, irreducibility of a totally symmetric makes impossible its algebraic connection with either 
aAB& or aAd6C. 
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where pi = 
(4, j)’T are transverse and three-dimensional y-  transverse : 

yf = (6ij  +pipj )  yj = Pi jy j  and the gauge invariant variables 

yi*TT = 0 = pi *Fr .  

Insertion of (8) in (6) and integration over Lagrange multipliers yields 

Z [  jc;, jy] = D~FDG’ exp(i J d 4 x i { 2 ~ , d $ ? ~  

+ 4 t , ~ ? ~ j f ~  -4fi;jz1 + 1 2 ( ~ ~ ‘ +  T I @ ) ( - A )  1 / 2 j k l ) .  ( 9 )  

From (9) we learn that two s = 3/2 variables remain. All lower spins do not contribute. 
The way, however, the 3/2 fields appear here indicates the presence of a ghost. To 
reveal it one simply may redefine the variables according to 

@TT = 2-”’(A + cp)?’ and @ZT=2 ’ 2 ( h - q ) ? .  I101 

q?’ is a ghost field. 

follows upon performing the remaining integrations: 
Another way of saying this is that one source appears as antisource of the other that 

2 [ j ~ ; ,  jv]=exp(i  I d 4 ~ i ( 8 j ~ ~ , i d - 1 j ~ T  + 12(jT‘+jL@)(-A) 1 ’ 2 j L } ) .  ,111 

This shortcoming is a feature of the (0,3/2) representation which requires an off- 
diagonal structure in the Lagrangian for its dynamics. 

Leaving aside supersymmetry one may try to improve the situation by adding 
further pieces to 1312. It turns out that diagonal Rarita-Schwinger terms only represent 
new contributions which, however, worsen the theory, for they generate further s = 1 /2 
excitations and leave the ghosts (see also Townsend 1980, Deser et a1 198 1 \ 

4. The boson action 

I2 contains the graviton in the (3/2, 1/2) representation of the vierbein connection. 
From the results of Sezgin and van Niewenhuizen (1980) we know that there is no 
possibility of having a propagating massless spin-2 field in this representation which is 
ghost-free. Therefore we are not surprised to find it here as a supersymmetry 
companion of the fermionic ghost action 13,2. 

In order to identify the physical fields we proceed as above. The generating 
functional reads 

where jI*,ap = - jp.pa and ai,j,,ap = 0. 
For the evaluation of Z [  j,,a.P] we introduce the 3 + 1 induced variables 

WO,Or = 1 1  Wo.1, = &c,kKk Wt.0, = & , , k a k  + f i ,  0, ,!, - <%( ,h, + r , u h  

I121 
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f i i  and hii are symmetric three-dimensional tensors both carrying massless spin 2. The 
Coulomb gauge is 

GC = 8.f.. = 0 = aihii. 
I 11 

Further decomposition of the vectors and tensors into their standard transverse and 
longitudinal variables leads in particular for the tensors (in the chosen gauge) to 

(13) (h ,  f ) i j  = ( h , f ) T + + p i j ( h ,  f ) k k -  

(h, f)? are gauge invariant variables. 
Correspondingly the sources can be described hv 

i o . o i  = i i  

io . . = E . .  .* i i . 0 j  = E i j k l k  + i i j  i.lk i [ j lk ]+  E j k l l i l ,  .2 (i?:' = ). j . .  = -8.  . "  11 11 
A 1  

. II  v k l k  

As the 24 bosonic degrees of freedom contain 6 multipliers associated with 6 con- 
straints, there will be no more than 12 = 24 - 2 x 6 propagating degrees of freedom. In 
fact we find after integration over the Lagrange multipliers 

These are two propagating spin-2 fields, one of which is a ghost. All lower spins do not 
propagate. This is also what one would expect from supersymmetry and it confirms the 
result of Sezgin and van Niewenhuizen (1980). 

In order to show complete analogy with the fermionic action we introduce variables 
f f  = (f* h ) ,  and redefine thesources byj$ = ( j 2 * j 1 ) i f i  The last two integrations in (14) 
then have the result 

~ [ j ~ , ~ ~ ]  = exp( i J d4x( &i$"&j," + caia AP1ia]). (15) 

This is the bosonic counterpart to (10). 

5. Ghost decoupling 

As the ghosts found in the analysis above have a simple structure we are able to separate 
them from the physical particles in a supercovariant way. To see this we write the fields 
in terms of their Fourier expansions in a special frame of reference: 
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Here 

E l , ( * ,  @I = E ,  (*, @ ) E ,  (+, 6) 
where E , ( * )  is a complex polarisation vector associated with the helicity operator b (* 
and it obeys the identities 

c E , ( S ) E : :  (S) = P,,, E , ( S ) E : ( S t ) = S , , ,  P,E,(* ,  p’) = 0. i 17) 
s = *  

In a general frame one has (de Witt 1964) 

E y S ) E ; ( S ‘ )  = S,,’, p + E C L ( S ) = O = p + & + ( S )  

and the supersymmetry generators are represented by 

Q = - i  1 d3P 1 [ ( a : ( ~ , @ ) 6 ~ ( ~ , @ ) + a ; ( s , ~ ) b i ( s , @ ) ) & * ~ ( s , @ ) ~ , ~ ~ ~ , @ ) - H c l  

with 

(20) ,=* 

{Q, QI = ~ P Y ” ,  po=E>O. 

Therefore one can immediately diagonalise the Hamiltonian by the linear trans- 
formation 

1 1 
cr = --(a1 - n2) 

J2 
A =-(ai + a2) 

J2 

1 1 
P = -b- b2) J2 

B =-(b1+bz) 
J2 

when it splits into two pieces 
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Since the supertransfokmations do not mix ghosts with particles, it follows from the 
commutator 

[Ab, ij), Ql= - - i&” * (~ ,  F)Y,x(s ,  P)B(s, P) (22) 

(same for CY and p )  that the total Fock space decomposes into two invariant subspaces of 
which one represents the ghosts with negative-norm kets. This splitting is due to the 
simple attachment of the ghosts to the particles and does not occur in the more 
sophisticated conformal case (Ferrara and Zumino 1978). 

6. Conclusion 

We found that a change in the representation of the gravitino to (0,3/2) leads to a 
theory totally different from supergravity. In particular as the fermion representation 
comes with an s = 3/2 ghost field which is necessary for it to propagate, supersymmetry 
calls for a ghost action for the graviton as well. The latter is therefore quadratic in the 
curvature and belongs to a class of actions investigated also by Sezgin and van 
Niewenhuizen (1980). 

From our results we learn also that in conformal supergravity where the Rarita- 
Schwinger field strength enters through its (0,3/2) projection (Ferrara and Zumino 
1978) the ghost structure originates from a superposition of higher-derivative ghosts 
and those arising from the fermion representation. Finally gauging this antisymmetric 
tensor spinor theory would mean that the gauge transformation (3a) combines with the 
transformation ( 4 4  to 

(23) 64, = K-’D,~  + ( 4 4  +. . . I 
A gauge variation of the local action I3I2 then generates the term 

which has been encountered already in all other antisymmetric tensor theories (Deser 
and Witten 1980, Deser et al 1981, Townsend 1980) where it gave rise to inconsisten- 
cies. Although here the Riemann tensor is part of the full local action it is not clear yet 
whether this theory can escape those difficulties. 
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